Самые красивые фотографии марса. Лучшие фотографии Марса с момента посадки Curiosity Снимки поверхности марса в высоком разрешении

Этот год был хорошим для поверхностного марсианского робота НАСА, сделавшего несколько потрясающих фотографий Красной планеты за последние 12 месяцев.

С августа 2012 года марсоход Curiosity пробирался по марсианской поверхности, получая новые сведения об окружающей среде. Где же потоки воды? Была ли здесь жизнь? И что случилось в кратере Гейл и горе Эолиде? Теперь, когда ровер находится в нижней горе, он снял несколько эффектных снимков дюн, скал и даже метеорит. Вот самые примечательные кадры.

Дюны

Хватайте свои 3D-очки и насладитесь этой 13-футовой марсианской дюной! Дюна Намиб стала частью исследования активных песчаных дюн (они быстро мигрируют каждый год). Намиб – часть региона Bagnold Dunes, которые передвигаются на один метр в год.

«Как и на Земле, с подветренной стороны песчаные дюны имеют крутой наклон, называемый скользящей гранью», – сообщило НАСА в заявлении. – «Песчаные крупицы дуют с наветренной стороны, создавая насыпи, которые потом, подобно лавине, падают вниз. Затем процесс повторяется».

Песчаное селфи

Это еще один вид региона Bagnold Dune, сделанный марсоходом спереди. Это не просто крутой снимок. Он позволяет инженерам НАСА контролировать состояние аппарата. Например, первой причиной для беспокойства стало то, как быстро сносились колеса ровера. НАСА приступило к вождению на гадкой земле, что замедлило скорость износа.

Бугры

Марсианская порода – это интересная вещь для изучения, так как рассказывает много полезного о геологической истории планеты. Здесь вы можете заметить некоторые выступы на песчанике внутри геологического блока Мюррей. По какой-то причине эти образования, кажется, остановили эрозию.

«Место располагается в нижней зоне горы Шарп, где аргиллиты из блока Мюррей (видимые в нижнем правом углу) выставлены рядом с вышележащим блоком Стимсона», – сообщило НАСА в заявлении. – «Точная линия контакта двух блоков покрыта принесенным ветром песком. Большинство других частей блока Стимсона не показало наличия устойчивых к эрозии узелков».

Скалы

Эта великолепная панорама (включая тень аппарата справа) показывает «Naukluft Plateau» в нижней части горы Шарп. Curiosity сделал серию изображений 4 апреля, так что геологам удалось разобраться с целым регионом (история пород).

«С момента посадки ровер прошел сквозь местности с наличием водных осадочных пород (аргиллиты и алевролиты, а также скопления на ранних стадиях), некоторые из которых содержали такие минералы, как глина, свидетельствующие о древнем присутствии воды», – говорит НАСА. – «Но на новом плато марсоход оказался в совершенно иной геологии. Песчаник здесь представляет толстые слои принесенного ветром песка, предполагая, что эти отложения образовались в более сухой эпохе».

Рябь и пыль

Даже рябь на Марсе отличается. Наибольшие ряби на изображении отдалены друг от друга на 10 футов. На Земле такого не увидишь. Хотя небольшие все же напоминают наши. Это изображение приняли в декабре 2015 года на месторождении Bagnold dune. Снимки были сразу же отправлены на Землю для публикации, но иногда на загрузку уходят месяцы, чтобы получить более качественный вид.

«Кадры сделали ранним утром камерой, обращенной к Солнцу, – пишет НАСА. – «Это мозаичное изображение обработали, чтобы сделать рябь более заметной. Песок очень темный из-за утренних теней и внутренней тьмы минералов, доминирующих в его составе».

Автономные пиу-пиу

Пока лаз
ерная стрельба роботов выглядит слегка устрашающе на Земле, ее мирно применили на Марсе. Ровер выбирает мишени для лазерного анализа, используя заложенную в программное обеспечение программу. Так, если аппарат оказался в нужном месте, он может приступать к работе, пока ученые пытаются сориентироваться. На левом кадре вы видите цель до процедуры, а на правом – результат.

«Лазерный спектрометр ChemCam стирает сетку из девяти точек на камне, выбранном в соответствии с указанными критериями. В этом случае нужно было найти яркий обнаженный камень, а не темные скалы. В течение 30 минут после того, как Navcam приняло изображение, лазер выполнил задание по целевой области».

Скалистая красота

То, что на первый взгляд выглядит как случайный ассортимент пород холмов Murray Buttes, на самом деле говорит очень много о долгой истории древнего Марса. Пока на планете доминирует ветреная эрозия, изображение демонстрирует важные процессы для прошлого. Аппарат также нашел доказательство водной эрозии на высших областях горы Шарп.

«Это остатки древнего песчаника, созданного осажденным ветром песком, после образования нижней горы Шарп. Косая слоистость указывает на то, что песчаник был нанесен ветром мигрирующей дюны».

Видение будущего

Снимок сделан в конце 2016 года, показав вид с ровера, в том числе и то, куда он направляется дальше. Оранжевая порода – это нижняя часть горы Шарп. Выше него – слой гематита, еще выше – глина (трудно здесь рассмотреть). Округленные холмы – блок сульфата, куда Curiosity планирует направиться. Еще дальше расположены высокие склоны горы. Ровер сможет их рассмотреть, но близко не подъедет.

«Разнообразие красок намекает на различие в составе горы. Фиолетовый уже замечали в других породах, в которых выявили гематит. В этом сезоне ветры не наносят много песка, и камни относительно свободны от пыли (которая может скрыть цвет)».

Визиты пришельцев

Вы даже не представляете насколько это круто! Сделанный человеком ровер бороздит чужую планету и натыкается на чужеродный объект. Вы видите железоникелевый метеорит, размером с мяч для гольфа. Его назвали «каменным яйцом». «Это общий класс космических камней, не раз обнаруженных и на Земле. Но на Марсе мы нашли подобное впервые. Его исследовали при помощи лазерного спектрометра».

Путь сквозь историю

Камера высокого разрешения (HiRISE) получила первые картографические снимки поверхности Марса с высоты в 280 км, с разрешением 25 см/пиксель!
Слоистые осадки в каньоне Гебы.

Выбоины на стенке кратера Гаса. (NASA/JPL/University of Arizona)

Гейзеры Манхэттена. (NASA/JPL/University of Arizona)

Поверхность Марса покрытая сухим льдом. Вам приходилось когда-нибудь играть с сухим льдом (конечно же в кожаных перчатках!)? Тогда вы наверное заметили, что сухой лед из твердого состояния сразу переходит в газообразное, в отличие от обычного льда, который, нагреваясь, превращается в воду. На Марсе ледниковые купола состоят из сухого льда (углекислого газа). Когда весной на лед падают солнечные лучи, он переходит в газообразное состояние, что вызывает эрозию поверхности. Эрозия порождает причудливые паукообразные формы. На этом снимке показаны каналы, возникшие в результате эрозии и заполненные светлым льдом, который вступает в контраст с приглушенным красным цветом окружающей поверхности. Летом этот лед растворится в атмосфере и вместо него останутся лишь каналы, похожие на призрачных пауков, высеченых на поверхности. Такой тип эрозии характерен только для Марса и не возможен в естественных условиях на Земле, так как климат нашей планеты слишком теплый. Автор текста: Candy Hansen (21 марта 2011 года) (NASA/JPL/University of Arizona)

Слоистые минеральные отложения на южной оконечности находящегося на средней широте кратера. Светлые слоистые отложения видны в центре снимка; они проявляются вдоль краев столовых гор, расположенных на возвышенности. Подобные отложения можно найти во многих местах на Марсе, включая кратеры и каньоны около экватора. Он могли образоваться в результате осадочных процессов под воздействием ветра и/ли воды. Вокруг столовой горы видны дюны или складчатые образования. Складчатая структура является результатом дифференциальной эрозии: когда одни материалы поддаются эрозии легче, чем другие. Возможно, эта территория когда-то была покрыта мягкими осадочными отложениями, которые сейчас исчезли в результате эрозии. Автор текста: Келли Колб (15 апреля 2009 года) (NASA/JPL/University of Arizona)

Подстилающие породы, выступающие на стенках и центральной горке кратера. (NASA/JPL/University of Arizona)

Твердые структуры соляной горы в каньоне Ганг. (NASA/JPL/University of Arizona)

Кто-то вырезал кусок планеты! (NASA/JPL/University of Arizona)

Песчаные насыпи, образованные в результате весенних песчаных бурь на Северном полюсе. (NASA/JPL/University of Arizona)

Кратер с центральной горкой, диаметром 12 километров. (NASA/JPL/University of Arizona)

Система разломов Cerberus Fossae на поверхности Марса. (NASA/JPL/University of Arizona)

Пурпурные дюны кратера Проктор. (NASA/JPL/University of Arizona)

Обнажения светлых пород на стенах столовой горы, расположенной в Земле Сирен. (NASA/JPL/University of Arizona)

Весенние изменения в районе Итака. (NASA/JPL/University of Arizona)

Дюны кратера Рассел. Фотографии, сделанные в кратере Рассела, изучаются многократно с целью отслеживания изменения ландшафта. На этом снимке показаны отдельные темные образования, которые, вероятно, возникли под воздействием многократных пылевых бурь, которые унесли светлую пыль с поверхности дюн. Узкие каналы продолжают формироваться на крутых поверхностях песчаных дюн. Углубления в конце каналов могут быть тем местом, где накапливались блоки сухого льда перед тем, как перейти в газообразное состояние. Автор текста: Кен Херкенхофф (9 марта 2011 года) (NASA/JPL/University of Arizona)

Желоба на стенках кратера под обнаженной породой. (NASA/JPL/University of Arizona)

Территории, где возможно содержится много оливина. (NASA/JPL/University of Arizona)

Овраги между дюн на дне кратера Кайзер. (NASA/JPL/University of Arizona)

Долина Морт. (NASA/JPL/University of Arizona)

Отложения на дне каньона Лабиринт ночи. (NASA/JPL/University of Arizona)

Кратер Холдена. (NASA/JPL/University of Arizona)

Кратер Св. Марии (Santa Maria Crater). Аппарат HiRISE сделал цветной снимок кратера Св. Марии на котором виден робокар Opportunity, который застрял у южновосточного края кратера. Робокар собирал данные об этом относительно новом кратере, диаметром 90 метров, с целью определить, какие факторы повлияли на его появление. Обратите внимание на окружающие блоки и лучи образований. Спектральный анализ CRISM выявляет наличие гидросульфатов на этой территории. Обломки робокара находятся на расстоянии в 6 километров от края кратера Endeavour Crater, основными материалами которого являются гидросульфаты и филосиликаты. (NASA/JPL/University of Arizona)

Центральная горка большого, хорошо сохранившегося кратера. (NASA/JPL/University of Arizona)

Дюны кратера Рассел. (NASA/JPL/University of Arizona)

Слоистые отложения в каньоне Гебы. (NASA/JPL/University of Arizona)

Район ярдангов Eumenides Dorsum. (NASA/JPL/University of Arizona)

Движения песка в кратере Гусева, расположенного неподалеку от холмов Колумбии. (NASA/JPL/University of Arizona)

Северный горный хребет Hellas Planitia, который возможно богат оливином. (NASA/JPL/University of Arizona)

Сезонные изменения на участке Южного полюса, покрытого трещинами и рытвинами. (NASA/JPL/University of Arizona)

Остатки южных полярных шапок весной. (NASA/JPL/University of Arizona)

Замерзшие впадины и рытвины на полюсе. (NASA/JPL/University of Arizona)

Отложения (возможно вулканического происхождения) в Лабиринте ночи. (NASA/JPL/University of Arizona)

Слоистые обнажения на стене кратера, расположенного на Северном полюсе. (NASA/JPL/University of Arizona)

Одиночное паукообразное образование. Это образование представляет собой каналы, высеченные на поверхности, которые образовались под воздействием испарения углекислого газа. Каналы организованы радиально, расширяясь и углубляясь по мере их приближения к центру. На Земле подобных процессов не происходит. (NASA/JPL/University of Arizona)

Рельеф долины Атабаска.

Конусы кратеров равнины Утопия (Utopia Planitia). Равнина Утопия (Utopia Planitia) - гигантская низменность, расположенная в восточной части северного полушария Марса, и примыкающая к Великой северной равнине. Кратеры в этом районе вулканического происхождения, о чем свидетельствует их форма. Кратеры практически не подвержены эрозии. Конусообразные холмы или кратеры, подобные образованиям, изображенным на этом снимке, довольно распространены в северных широтах Марса. (NASA/JPL/University of Arizona)

Полярные песчаные дюны. (NASA/JPL/University of Arizona)

Внутренняя часть кратера Тутинг. (NASA/JPL/University of Arizona)

Деревья на Марсе!!! На этой фотографии мы видим нечто, поразительно похожее на деревья, растущие среди марсианских дюн. Но эти «деревья» – оптическая иллюзия. На самом деле это темные отложения на подветренной стороне дюн. Они появились вследствие испарения диоксида углерода, «сухого льда». Процесс испарения начинается в нижней части ледяного образования, в результате этого процесса пары газа выходят через поры на поверхность и попутно выносят темные отложения, которые остаются лежать наповерхности. Это снимок был сделан аппаратом HiRISE, установленным на борту разведывательного спутника NASA Orbiter в апреле 2008. (NASA/JPL/University of Arizona)

Кратер Виктории. На фотографии видны отложения на стене кратера. Дно кратера покрывают песчаные дюны. Слева видны обломки робокара НАСАOpportunity. Снимок был сделан аппаратом HiRISE, установленным на борту разведывательного спутника NASA Orbiter, в июле 2009 года. (NASA/JPL-Caltech/University of Arizona)

Линейные дюны. Эти полоски - линейные песчаные дюны на дне кратера в районе Noachis Terra. Темные участки – это сами дюны, а светлые – промежутки между дюнами. Фотография сделана 28 декабря 2009 года астрономической камерой высокого разрешения HiRISE (High-Resolution Imaging Science Experiment), установленного на борту разведывательного спутника NASA Orbiter. (NASA/JPL/University of Arizona)

Выдающиеся цифровые методы обработки фотографий голландца Киса Венебоса были продемонстрированы в National Geographic и на сайте НАСА. Обработку изображений он производил с помощью программы ландшафтного моделирования Terragen. Он работал с различными версиями этой программы уже с 1999 года. Большинство из фотографий были получены путем цифрового моделирования высот на снимках НАСА с различных спутников, таких, например, как Mars Global Surveyor. Он сделал много фотографий для National Geographic, не только Марса, но и старой доброй Земли и других планет Солнечной системы и экзопланет других систем. Мы собрали коллекцию его наиболее живописных и фантастических фотографий Марса.


1. Южная оконечность кратера Холдена. Скалистые горы закрывают солнце, которое прорывается сквозь облака, образуя форму звезды.

2. Кратер Гусева в древние времена. То место, где приземлился робокар-марсоход Spirit MER2003. Недавно прошла песчаная буря.

3. Долина Маринер. Долина Маринер после пыльной бури, вид на долину со стороны каньона Копрат (на переднем плане).

4. Ноачианская эпоха на Марсе. Так выглядел Марс около 4 миллиардов лет тому назад. Северный разлом заполнен водой, большое озеро внизу - это Меридиани. Марсоход Opportunity обнаружил присутствие этого внутреннего моря. Фотография выполнена для июльского выпуска National Geo. за 2005 год.

5. Равнина Аргире. Концептуальное изображение для National Geographic: Марс в период, когда он терял воду несколько миллиардов лет назад. Отложения соли, трещины в грязи, образование гематита, пылевые вихри и падающие метеоры.

6. Кратер Маральди на обледенелом Марсе. Сделано для обложки январского выпуска журнала National Geographic за 2004 год.

7. Южная часть равнины Хриса. Древний вид южной области долины Хриса, окруженной долинами Ареса и Маринер.

8. Северный полюс Марса и Северный разлом.Северный полюс (слева) и Северный разлом. Большой кратер вверху - это кратер Королева, чей диаметр составляет 85 км.

9. Пещера, находящаяся на северном склоне марсианского кратера Гейла. Вид пещеры на северном склоне кратера Гейла. Конус кратера Гейла – слева.

10. Рассвет на горе Элизий. Изображение выполнено для выставки в мадридском планетарии, которая была посвящена Марсу. Слева - вулкан Купол Гекаты, справа - Купол Альбор.

11. Место посадки робокара-марсохода Spirit. Фрагмент кратера Гусева (на заднем плане – гора Хасбенд-Хилл). Древний Марс, фумаролы, осадочные отложения от горячей воды.

12. Так выглядел Марс в ледниковый период.

13. Рассвет на горе Олимп. Рассвет в утреннем тумане на плато Фарсида. Вулкан Олимп виден из области Lycus Sulci.

14. Долина Маринер. Туманное утро на склоне одной из подвергшихся эрозии гор долины Маринер.

15. Кратер Скьяпарелли. Свет низко стоящего солнца не достигает западного края. Диаметр кратера Скьяпарелли составляет 450 километров (280 миль).

16. Кратер Orcus Patera на закате. Кратер Orcus Patera непривычной овальной формы образовался из-за метеорита, который слегка задел Марс.

17. Южный край кратера Гейла. Странное облако над оврагом, который ведет к кратеру Гейла. Конус кратера можно разглядеть чуть ниже солнца. Вид на северо-восток.

18. Кратер Гейла.Закат над областью Киммерия. Вид на кратер Гейла с Эолова плоскогорья.

19. Место посадки робокара-марсохода Spirit. Так выглядел Гусева в ноачианскую эпоху. Еще одна конце6птуальная работа, где присутствует больше воды и фумарол.

20. Разлом Мелас на рассвете. Место посадки марсохода №2. Разлом Мелас.

21. Марс сегодня.Это изображение печаталось вместе с изображением ноачианской эпохи (внизу) в июльском выпуске журнала National Geographic Magazine за 2005 год.

22. Марс, если бы он был Землей, - долина Касэй. Долина Касэй и долина Хриса. Внизу - проход в долину Маринер. На фоне туманностей и звезд.

23. Место посадки Phoenix. Справа - край кратера Хеймдалль.

24. Северный полюс и Северный разлом. Слева находится один из крупных кратеров, кратер Королева (около 85 км в диаметре).

25. Разлом Ius Chasma (долина Маринер). Ius Chasma (западная часть долины Маринер) с пылью и туманом.

26. Горы Фарсиды. Горы Арсия, Павлина и Аскрийская. Вид с юго-запада на северо-восток. Влево - кратер Библис (слева) и кратер Улисс.

27. Гора Олимп в древности. Так могла бы выглядеть гора Олимп около 4 миллиардов лет назад. Присутствуют вода и более плотная атмосфера. Фотография выполнена для выставки в мадридском планетарии.

28. Гора Арсия. Гора Арсия достигает высоты более 20 км, ее диаметр 450 км, диаметр кальдеры свыше 120 км.

29. Купол Фарсиды. Купол Фарсиды во время песчаной бури сфотографирован «вверх ногами». Вулканы Фарсиды возвышаются над зоной песчаной бури.

Марсоход Curiosity вот уже больше недели пребывает на Марсе, и за это время его камеры успели сделать сотни потрясающих ландшафтных фотографий. Мы предлагаем вашему вниманию подборку наиболее интересных снимков.

Часть панорамы Марса, полученной навигационными камерами Curiosity. На снимке хорошо видно каменистое дно кратера Гейла; горы вдалеке — кромка кратера.


Первая летающая тарелка, сфотографированная на Марсе, оказалась земного производства. На фото мы видим 4,5-метровый тепловой экран, защищавший аппарат во время спуска в атмосфере Марса. Снимок получен камерой MARDI в момент спуска. Расстояние между Curiosity и щитом составляло 16 метров.

За посадкой Curiosity на Марс следил орбитальный зонд MRO (Mars Reconaissance Orbiter), оснащенный камерой высокого разрешения HiRISE. На этом снимке, сделанном с расстояния нескольких сотен километров, видны парашют и спускаемый аппарат с марсоходом. На увеличенном и специально обработанном изображении справа видно гораздо больше деталей. Разрешение снимка составляет 33,6 см на пиксель

Одно из первых изображений марсианской поверхности, полученное марсоходом Curiosity. Камера смотрит в направлении горы Шарпа.

Curiosity с орбиты Марса. Разрешение снимка 39 см на пиксель.

Глядя в противоположную сторону от Солнца. Это первое фото, полученное навигационными камерами Curiosity. Помимо функции обзора навигационные камеры помогают найти Солнце (по теням); это необходимо для связи с Землей

Шероховатая и каменистая поверхность Марса. Это цветное фото, полученное с помощью камеры MARDI (Mars Descent Imager) спутя несколько минут после посадки Curiosity, показывает шероховатую структуру марсианской поверхности. Грунт сфотографирован с высоты всего около 70 см, масштаб изображения составляет 0,5 мм на пиксель. Однако с такого малого расстояния камера не могла получить достаточно четкие снимки, поэтому реальное разрешения — около 1,5 мм на пиксель. Самый крупный камень имеет 5 см в поперечнике. Слева в кадр попало колесо ровера, в центре снимка поверхность Марса освещает солнечный луч, просочившийся через Curiosity

Глядя в сторону горы Шарпа — главной цели Curiosity. Оба снимка получены с помощью камеры HazCam до и после снятия прозрачной крышки, которая защищала камеру от пыли и песка во время спуска марсохода.

Первое цветное фото поверхности Марса, полученное Curiosity. Защитная крышка еще не снята с камеры, поэтому изображение не очень четкое

Холмистая кромка кратера Гейла, сфотографированная одной из камер Mastcam

А этот снимок сделан навигационной камерой Curiosity спустя двое суток после прибытия на Марс. В кадр попало колесо марсохода.

Поверхность Марса в основном сложена из базальтовых скал, большая часть которых покрыта тонким слоем рыжевато-красной пыли. На финальном этапе посадки Curiosity спускался с помощью реактивного блока «Небесный кран»; в некоторых местах реактивные струи блока подняли пыль и обнажили горную породу. В правом верхнем углу виден голубовато-серый базальт, обнажившийся в результате воздействия двигателей Небесного крана

Гора Шарпа — центральная горка кратера Гейла — главная цель марсохода Curiosity. Грунт на пути марсохода усеян камнями и голубовато-серыми кусками базальта. Эта картина типична для Марса.

На третий день. Камеры Mastcam марсохода смотрят непосредственно перед собой. Камни и грунт покрыты тонким слоем красноватой пыли, готовой взметнуться в воздух под воздействием ветра. Климат на Марсе очень сухой, поэтому несмотря на суровые морозы, вечная мерзлота на Загадочной планете почти не встречается.

Окрестности Curiosity. Цвета на фото искусственно усилены для выявления деталей поверхности; на самом деле голубые дюны имеют голубовато-серый цвет. Поля дюн лежат между местом посадки Curiosity и горой Шарпа, именно эти места будет исследовать марсоход. Сама гора не попала на снимок (она расположена ниже). Ровер находится примерно в 300 м от нижней части изображения. Разрешение снимка — 62 см на пиксель

Ударный кратер размером около трех километров

Поверхность Марса это сухая и бесплодная пустошь, покрытая старыми вулканами и кратерами.

Дюны глазами Mars Odyssey

Фотографии показывают, что она может быть скрыта одной песчаной бурей, которая укрывает ее от наблюдения в течение нескольких дней. Несмотря на грозные условия, Марс лучше изучен учеными, чем любой другой мир Солнечной системы, кроме нашего собственного, конечно.

Так как планета имеет почти такой же наклон, как и у Земли, и у нее есть атмосфера, значит существуют сезоны. Температура на поверхности составляет около -40 градусов по Цельсию, однако на экваторе может доходить до +20. На поверхности планеты существуют следы воды, и особенности рельефа, сформированные водой.

Пейзаж

Давайте подробнее рассмотрим поверхность Марса, информация предоставленная многочисленными орбитальными аппаратами, а также марсоходами, позволяет полностью понять, что из себя представляет красная планета. Сверхчеткие снимки показывают нам сухой, скалистый рельеф, покрытый мелкой красной пылью.

Красная пыль, на самом деле, это оксид железа. Все, начиная от земли до маленьких камней и скал, покрыто этой пылью.

Так как на Марсе нет ни воды, ни подтвержденной тектонической активности, его геологические особенности остаются практически неизменными. По сравнению с поверхностью Земли, которая испытывает постоянные изменения, связанные с водной эрозией и тектонической активностью.

Поверхность Марса видео

Ландшафт Марса состоит из разнообразных геологических структур. Он является домом для , известных во всей Солнечной системе. Это еще не все. Наиболее известный каньон в Солнечной системе, это Долина Маринера, также находящаяся на поверхности Красной планеты.

Посмотрите на картинки с марсоходов, которые показывают множество подробностей которые не видны с орбиты.

Если у вас есть желение посмотреть на Марс онлайн, то

Фото поверхности

Изображения представленные ниже, представляют собой изображения с Кьюриосити, — марсохода, который сейчас занят активным изучением красной планеты.

Для просмотра в полноэкранном режиме нажмите на кнопку справа вверху.


























Панорама, переданная марсоходом Curiosity

Данная панорама представляет собой участок кратера Гейла, в котором ведет свои исследования Curiosity. Высокий холм в центре это гора Шарпа, справа от нее можно увидеть в дымке кольцевой вал кратера.

Для просмотра в full size, сохраните себе изображение на компьютер!

Эти фотографии поверхности Марса от 2014 года и фактически, на данный момент, наиболее свежие.

Среди всех особенностей ландшафта Марса, пожалуй наиболее широкую огласку получили столовые горы Сидонии. Ранние фотографии региона Седонии показали холм в виде “человеческого лица”. Однако более поздние снимки, с более высоким разрешением, представили нам обычный холм.

Размеры планеты

Марс это довольно маленький мир. Его радиус составляет половину от Земного, он имеет массу, которая составляет менее одной десятой от нашей.

Дюны, снимок MRO

Подробнее про Марс: поверхность планеты состоит в основном из базальта, покрытого тонким слоем пыли, оксида железа, который имеет консистенцию талька. Оксид железа (ржавчина, как его обычно называют) дает планете свой характерный красный оттенок.

Вулканы

В древности на планете вулканы непрерывно извергались в течение миллионов лет. Из-за того что Марс не имеет тектоники плит, образовались громадные вулканические горы. Гора Олимп была сформирована подобным образом и является крупнейшей горой в Солнечной системе. Она в три раза выше, чем Эверест. Такая вулканическая активность также может частично объяснить самую глубокую долину в Солнечной системе. Долина Маринера, как полагают, образовалась в результате распада материала между двумя точками поверхности Марса.

Кратеры

Анимация, показывающая изменения вокруг кратера в Северном полушарии

На Марсе множество ударных кратеров. Большинство из этих кратеров остаются нетронутыми, потому что на планете нет сил способных их разрушить. Планете не хватает ветра, дождя и тектоники плит, вызывающих эрозию на Земле. Атмосфера намного тоньше, чем у Земли, так что даже маленькие метеориты способны долететь до земли.

Текущая поверхность Марса сильно отличается от того, что было миллиарды лет назад. Данные орбитальных аппаратов показали, что существует много минералов и следов эрозии на планете, которые указывают на наличие жидкой воды в прошлом. Вполне возможно, что небольшие океаны и длинные реки когда-то дополняли пейзаж. Последние остатки этой воды оказались в ловушке под землей в виде льда.

Общее количество кратеров

Существуют сотни тысяч кратеров на Марсе, из них 43 000, у которых диаметр больше 5 километров. Сотни из них, были названы в честь ученых или знаменитых астрономов. Кратеры менее 60 км в поперечнике были названы в честь городов на Земле.

Самый известный — Hellas Basin. Он имеет размер 2100 км в поперечнике и глубину до 9 км. Он окружен выбросами, которые тянутся на 4000 км от центра.

Образование кратеров

Большинство кратеров на Марсе, вероятно, появились в позднем периоде «тяжелой бомбардировки» нашей Солнечной системы, которая произошла приблизительно от 4,1 до 3,8 миллиардов лет назад. В этот период, большое количество кратеров сформировалось на всех небесных телах в Солнечной системе. Доказательством этого события служат исследования лунных образцов, которые показали, что большинство пород были созданы в течение этого интервала времени. Ученые не могут прийти к соглашению относительно причин этой бомбардировки. Согласно теории, орбита газового гиганта изменилась и в результате, орбиты объектов, в главном поясе астероидов и поясе Койпера, стали более эксцентричными, достигнув орбит планет земной группы.